
Duct

Feb 20, 2022

Contents

1 Functions 3

2 Types 5

Python Module Index 13

Index 15

i

ii

Duct

Duct is a library for running child processes. Duct makes it easy to build pipelines and redirect IO like a shell. At the
same time, Duct helps you write correct, portable code: whitespace is never significant, errors from child processes get
reported by default, and a variety of gotchas, bugs, and platform inconsistencies are handled for you the Right Way™.

• GitHub repo

• PyPI package

• the same library, in Rust

Examples

Run a command without capturing any output. Here “hi” is printed directly to the terminal:

>>> from duct import cmd
>>> cmd("echo", "hi").run() # doctest: +SKIP
hi
Output(status=0, stdout=None, stderr=None)

Capture the standard output of a command. Here “hi” is returned as a string:

>>> cmd("echo", "hi").read()
'hi'

Capture the standard output of a pipeline:

>>> cmd("echo", "hi").pipe(cmd("sed", "s/i/o/")).read()
'ho'

Merge standard error into standard output and read both incrementally:

>>> big_cmd = cmd("bash", "-c", "echo out && echo err 1>&2")
>>> reader = big_cmd.stderr_to_stdout().reader()
>>> with reader:
... reader.readlines()
[b'out\n', b'err\n']

Children that exit with a non-zero status raise an exception by default:

>>> cmd("false").run()
Traceback (most recent call last):
...
duct.StatusError: Expression cmd('false') returned non-zero exit status:
→˓Output(status=1, stdout=None, stderr=None)
>>> cmd("false").unchecked().run()
Output(status=1, stdout=None, stderr=None)

Contents 1

https://github.com/oconnor663/duct.py/blob/master/gotchas.md
https://github.com/oconnor663/duct.rs
https://pypi.python.org/pypi/duct
https://github.com/oconnor663/duct.rs

Duct

2 Contents

CHAPTER 1

Functions

duct.cmd(prog, *args)
Build a command Expression from a program name and any number of arguments.

This is the sole entry point to Duct. All the types below are built with methods on the Expression returned
by this function.

>>> cmd("echo", "hi").read()
'hi'

3

Duct

4 Chapter 1. Functions

CHAPTER 2

Types

class duct.Expression
An expression object representing a command or a pipeline of commands.

Build command expressions with the cmd() function. Build pipelines with the pipe() method. Methods like
stdout_path() and env() also return new expressions representing the modified execution environment.
Execute expressions with run(), read(), start(), or reader().

before_spawn(callback)
Add a callback for modifying the arguments to Popen() right before it’s called. The callback will be
passed a command list (the program followed by its arguments) and a keyword arguments dictionary, and
it may modify either. The callback’s return value is ignored.

The callback is called for each command in its sub-expression, and each time the expression is executed.
That call happens after other features like stdout() and env() have been applied, so any changes
made by the callback take priority. More than one callback can be added, in which case the innermost is
executed last. For example, if one call to before_spawn() is applied to an entire pipe() expression,
and another call is applied to just one command within the pipeline, the callback for the entire pipeline
will be called first over the command where both hooks apply.

This is intended for rare and tricky cases, like callers who want to change the group ID of their child
processes, or who want to run code in Popen.preexec_fn(). Most callers shouldn’t need to use it.

>>> def add_sneaky_arg(command, kwargs):
... command.append("sneaky!")
>>> cmd("echo", "being").before_spawn(add_sneaky_arg).read()
'being sneaky!'

dir(path)
Set the working directory for the expression.

>>> cmd("pwd").dir("/").read()
'/'

Note that dir() does not affect the meaning of relative exe paths. For example in the expression cmd(".
/foo.sh").dir("bar"), the script ./foo.sh will execute, not the script ./bar/foo.sh. How-

5

Duct

ever, it usually does affect how the child process interprets relative paths in command arguments.

env(name, val)
Set an environment variable in the expression’s environment.

>>> cmd("bash", "-c", "echo $FOO").env("FOO", "bar").read()
'bar'

env_remove(name)
Unset an environment variable in the expression’s environment.

>>> os.environ["FOO"] = "bar"
>>> cmd("bash", "-c", "echo $FOO").env_remove("FOO").read()
''

Note that all of Duct’s env functions follow OS rules for environment variable case sensitivity. That means
that env_remove("foo") will unset FOO on Windows (where foo and FOO are equivalent) but not
on Unix (where they are separate variables). Portable programs should restrict themselves to uppercase
environment variable names for that reason.

full_env(env_dict)
Set the entire environment for the expression, from a dictionary of name-value pairs.

>>> os.environ["FOO"] = "bar"
>>> os.environ["BAZ"] = "bing"
>>> cmd("bash", "-c", "echo FOOBAZ").full_env({"FOO": "xyz"}).read()
'xyz'

Note that some environment variables are required for normal program execution (like SystemRoot on
Windows), so copying the parent’s environment is usually preferable to starting with an empty one.

pipe(right_side)
Combine two expressions to form a pipeline.

>>> cmd("echo", "hi").pipe(cmd("sed", "s/i/o/")).read()
'ho'

During execution, if one side of the pipe returns a non-zero exit status, that becomes the status of the
whole pipe, similar to Bash’s pipefail option. If both sides return non-zero, and one of them is
unchecked(), then the checked side wins. Otherwise the right side wins.

During spawning, if the left side of the pipe spawns successfully, but the right side fails to spawn, the left
side will be killed and awaited. That’s necessary to return the spawn errors immediately, without leaking
the left side as a zombie.

read()
Execute the expression and capture its output, similar to backticks or $() in the shell.

This is a wrapper around reader() which reads to EOF, decodes UTF-8, trims newlines, and returns the
resulting string.

>>> cmd("echo", "hi").read()
'hi'

reader()
Start executing the expression with its stdout captured, and return a ReaderHandlewrapping the capture
pipe.

6 Chapter 2. Types

Duct

Note that while start() uses background threads to do IO, reader() does not, and it’s the caller’s
responsibility to read the child’s output promptly. Otherwise the child’s stdout pipe buffer can fill up,
causing the child to block and potentially leading to performance issues or deadlocks.

>>> reader = cmd("echo", "hi").reader()
>>> with reader:
... reader.read()
b'hi\n'

run()
Execute the expression and return an Output, which includes the exit status and any captured output.
Raise an exception if the status is non-zero.

>>> cmd("true").run()
Output(status=0, stdout=None, stderr=None)

start()
Start executing the expression and return a Handle.

Calling start() followed by Handle.wait() is equivalent to run().

>>> handle = cmd("echo", "hi").stdout_capture().start()
>>> # Do some other stuff.
>>> handle.wait()
Output(status=0, stdout=b'hi\n', stderr=None)

Note that leaking a Handle without calling Handle.wait() will turn the children into zombie pro-
cesses. In a long-running program, that could be serious resource leak.

stderr_capture()
Capture the standard error of the expression. The captured bytes become the stderr field of the returned
Output.

>>> cmd("bash", "-c", "echo hi 1>&2").stderr_capture().run()
Output(status=0, stdout=None, stderr=b'hi\n')

stderr_file(file_)
Redirect the standard error of the expression to the supplied file. This works with any file-like object
accepted by Popen, including raw file descriptors.

>>> f = open("/dev/null", "w")
>>> cmd("bash", "-c", "echo hi 1>&2").stderr_file(f).run()
Output(status=0, stdout=None, stderr=None)

stderr_null()
Redirect the standard error of the expression to /dev/null.

>>> cmd("bash", "-c", "echo hi 1>&2").stderr_null().run()
Output(status=0, stdout=None, stderr=None)

stderr_path(path)
Redirect the standard error of the expression to a file opened from the supplied filepath.

This works with strings, bytes, and pathlib Path objects.

>>> cmd("bash", "-c", "echo hi 1>&2").stderr_path("/tmp/outfile").run()
Output(status=0, stdout=None, stderr=None)

(continues on next page)

7

Duct

(continued from previous page)

>>> open("/tmp/outfile").read()
'hi\n'

stderr_to_stdout()
Merge the standard error of the expression with its stdout.

>>> bash_cmd = cmd("bash", "-c", "echo out && echo err 1>&2")
>>> bash_cmd.stderr_to_stdout().stdout_capture().stderr_capture().run()
Output(status=0, stdout=b'out\nerr\n', stderr=b'')

stdin_bytes(buf)
Redirect the standard input of the expression to a pipe, and write the supplied bytes to the pipe using a
background thread.

This also accepts a string, in which case it converts any \n characters to os.linesep and encodes the
result as UTF-8.

>>> cmd("cat").stdin_bytes(b"foo").read()
'foo'

stdin_file(file_)
Redirect the standard input of the expression to the supplied file. This works with any file-like object
accepted by Popen, including raw file descriptors.

>>> f = open("/dev/zero")
>>> cmd("head", "-c10").stdin_file(f).read()
'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'

stdin_null()
Redirect the standard input of the expression to /dev/null.

>>> cmd("cat").stdin_null().read()
''

stdin_path(path)
Redirect the standard input of the expression to a file opened from the supplied filepath.

This works with strings, bytes, and pathlib Path objects.

>>> cmd("head", "-c10").stdin_path("/dev/zero").read()
'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'

stdout_capture()
Capture the standard output of the expression. The captured bytes become the stdout field of the returned
Output.

>>> cmd("echo", "hi").stdout_capture().run()
Output(status=0, stdout=b'hi\n', stderr=None)

stdout_file(file_)
Redirect the standard output of the expression to the supplied file. This works with any file-like object
accepted by Popen, including raw file descriptors.

>>> f = open("/dev/null", "w")
>>> cmd("echo", "hi").stdout_file(f).run()
Output(status=0, stdout=None, stderr=None)

8 Chapter 2. Types

Duct

stdout_null()
Redirect the standard output of the expression to /dev/null.

>>> cmd("echo", "hi").stdout_null().run()
Output(status=0, stdout=None, stderr=None)

stdout_path(path)
Redirect the standard output of the expression to a file opened from the supplied filepath.

This works with strings, bytes, and pathlib Path objects.

>>> cmd("echo", "hi").stdout_path("/tmp/outfile").run()
Output(status=0, stdout=None, stderr=None)
>>> open("/tmp/outfile").read()
'hi\n'

stdout_stderr_swap()
Swap the standard output and standard error of the expression.

>>> bash_cmd = cmd("bash", "-c", "echo out && echo err 1>&2")
>>> swapped_cmd = bash_cmd.stdout_stderr_swap()
>>> swapped_cmd.stdout_capture().stderr_capture().run()
Output(status=0, stdout=b'err\n', stderr=b'out\n')

stdout_to_stderr()
Merge the standard output of the expression with its stderr.

>>> bash_cmd = cmd("bash", "-c", "echo out && echo err 1>&2")
>>> bash_cmd.stdout_to_stderr().stdout_capture().stderr_capture().run()
Output(status=0, stdout=b'', stderr=b'out\nerr\n')

unchecked()
Prevent a non-zero exit status from raising a StatusError. The unchecked exit code will still be there
on the Output returned by run(); its value doesn’t change.

>>> cmd("false").run()
Traceback (most recent call last):
...
duct.StatusError: Expression cmd('false') returned non-zero exit status:
→˓Output(status=1, stdout=None, stderr=None)
>>> cmd("false").unchecked().run()
Output(status=1, stdout=None, stderr=None)

“Uncheckedness” sticks to an exit code as it propagates up from part of a pipeline, but it doesn’t “infect”
other exit codes. So for example, if only one sub-expression in a pipe is unchecked(), then errors
returned by the other side will still be checked.

>>> cmd("false").pipe(cmd("true")).unchecked().run()
Output(status=1, stdout=None, stderr=None)
>>> cmd("false").unchecked().pipe(cmd("true")).run()
Output(status=1, stdout=None, stderr=None)
>>> cmd("false").pipe(cmd("true").unchecked()).run()
Traceback (most recent call last):
...
duct.StatusError: Expression cmd('false').pipe(cmd('true').unchecked())
→˓returned non-zero exit status: Output(status=1, stdout=None, stderr=None)

9

Duct

class duct.Handle
A handle representing one or more running child processes, returned by the Expression.start() method.

Note that leaking a Handle without calling wait() will turn the children into zombie processes. In a long-
running program, that could be serious resource leak.

kill()
Send a kill signal to the child process(es). This is equivalent to Popen.kill(), which uses SIGKILL
on Unix. After sending the signal, wait for the child to finish and free the OS resources associated with it.
If the child has already been waited on, this has no effect.

This function does not return an Output, and it does not raise StatusError. However, subsequent
calls to wait() or try_wait() are likely to raise StatusError if you didn’t use Expression.
unchecked().

>>> handle = cmd("sleep", "1000").start()
>>> handle.kill()

pids()
Return the PIDs of all the running child processes. The order of the PIDs in the returned list is the same as
the pipeline order, from left to right.

try_wait()
Check whether the child process(es) have finished, and if so return an Output containing the exit status
and any captured output. If the child has exited, this frees the OS resources associated with it.

>>> handle = cmd("sleep", "1000").unchecked().start()
>>> assert handle.try_wait() is None
>>> handle.kill()
>>> handle.try_wait()
Output(status=-9, stdout=None, stderr=None)

wait()
Wait for the child process(es) to finish and return an Output containing the exit status and any captured
output. This frees the OS resources associated with the child.

>>> handle = cmd("true").start()
>>> handle.wait()
Output(status=0, stdout=None, stderr=None)

class duct.ReaderHandle
A stdout reader that automatically closes its read pipe and awaits child processes once EOF is reached.

This inherits from io.IOBase, and you can call read() and related methods like readlines() on it.
When ReaderHandle is used as a context manager with the with keyword, context exit will automatically
call close().

Note that if you don’t read to EOF, and you don’t call close() or use a with statement, then the child will
become a zombie. Using a with statement is recommended for exception safety.

If one thread is blocked on a call to read(), then calling kill() from another thread is an effective way to
unblock the reader. However, note that killed child processes return a non-zero exit status, which turns into an
exception for the reader by default, unless you use Expression.unchecked().

close()
Close the read pipe and call kill() on the inner Handle.

ReaderHandle is a context manager, and if you use it with the with keyword, context exit will automat-
ically call close(). Using a with statement is recommended, for exception safety.

10 Chapter 2. Types

Duct

>>> reader = cmd("echo", "hi").reader()
>>> reader.close()

kill()
Call kill() on the inner Handle.

This function does not raise StatusError. However, subsequent calls to read() are likely to raise
StatusError if you didn’t use Expression.unchecked().

>>> child_code = "import sys, time; print('hi'); sys.stdout.flush(); time.
→˓sleep(1000000)"
>>> reader = cmd("python", "-c", child_code).unchecked().reader()
>>> with reader:
... reader.read(3)
... reader.kill()
... reader.read()
b'hi\n'
b''

pids()
Return the PIDs of all the running child processes. The order of the PIDs in the returned list is the same as
the pipeline order, from left to right.

read(size=-1)
Read bytes from the child’s standard output. Because ReaderHandle inherits from io.IOBase, re-
lated methods like readlines() are also available.

>>> reader = cmd("printf", r"a\nb\nc\n").reader()
>>> with reader:
... reader.read(2)
... reader.readlines()
b'a\n'
[b'b\n', b'c\n']

If read() reaches EOF and awaits the child, and the child exits with a non-zero status, and
Expression.unchecked() was not used, read() will raise a StatusError.

>>> with cmd("false").reader() as reader:
... reader.read()
Traceback (most recent call last):
...
duct.StatusError: Expression cmd('false').stdout_capture() returned non-zero
→˓exit status: Output(status=1, stdout=None, stderr=None)

try_wait()
Check whether the child process(es) have finished, and if so return an Output containing the exit status
and any captured output. This is equivalent to Handle.try_wait().

Note that the stdout field of the returned Output will always be None, because the ReaderHandle
itself owns the child’s stdout pipe.

>>> input_bytes = bytes([42]) * 1000000
>>> reader = cmd("cat").stdin_bytes(input_bytes).reader()
>>> with reader:
... assert reader.try_wait() is None
... output_bytes = reader.read()
... assert reader.try_wait() is not None
... assert input_bytes == output_bytes

11

Duct

class duct.Output
The return type of Expression.run() and Handle.wait(). It carries the pu-
bic fields status, stdout, and stderr. If Expression.stdout_capture() and
Expression:stderr_capture() aren’t used, stdout and stderr respectively will be None.

>>> cmd("bash", "-c", "echo hi 1>&2").stderr_capture().run()
Output(status=0, stdout=None, stderr=b'hi\n')

class duct.StatusError
The exception raised by default when a child exits with a non-zero exit status. See Expression.
unchecked() for suppressing this. If the exception is caught, the output field contains the Output.

>>> from duct import StatusError
>>> try:
... cmd("bash", "-c", "echo hi 1>&2 && false").stderr_capture().run()
... except StatusError as e:
... e.output
Output(status=1, stdout=None, stderr=b'hi\n')

12 Chapter 2. Types

Python Module Index

d
duct, ??

13

Duct

14 Python Module Index

Index

B
before_spawn() (duct.Expression method), 5

C
close() (duct.ReaderHandle method), 10
cmd() (in module duct), 3

D
dir() (duct.Expression method), 5
duct (module), 1

E
env() (duct.Expression method), 6
env_remove() (duct.Expression method), 6
Expression (class in duct), 5

F
full_env() (duct.Expression method), 6

H
Handle (class in duct), 9

K
kill() (duct.Handle method), 10
kill() (duct.ReaderHandle method), 11

O
Output (class in duct), 11

P
pids() (duct.Handle method), 10
pids() (duct.ReaderHandle method), 11
pipe() (duct.Expression method), 6

R
read() (duct.Expression method), 6
read() (duct.ReaderHandle method), 11
reader() (duct.Expression method), 6

ReaderHandle (class in duct), 10
run() (duct.Expression method), 7

S
start() (duct.Expression method), 7
StatusError (class in duct), 12
stderr_capture() (duct.Expression method), 7
stderr_file() (duct.Expression method), 7
stderr_null() (duct.Expression method), 7
stderr_path() (duct.Expression method), 7
stderr_to_stdout() (duct.Expression method), 8
stdin_bytes() (duct.Expression method), 8
stdin_file() (duct.Expression method), 8
stdin_null() (duct.Expression method), 8
stdin_path() (duct.Expression method), 8
stdout_capture() (duct.Expression method), 8
stdout_file() (duct.Expression method), 8
stdout_null() (duct.Expression method), 8
stdout_path() (duct.Expression method), 9
stdout_stderr_swap() (duct.Expression method),

9
stdout_to_stderr() (duct.Expression method), 9

T
try_wait() (duct.Handle method), 10
try_wait() (duct.ReaderHandle method), 11

U
unchecked() (duct.Expression method), 9

W
wait() (duct.Handle method), 10

15

	Functions
	Types
	Python Module Index
	Index

